Equilibria, Energetics and Elements Lattice Enthalpy

1.	(a)	(i)	Ca^+ is smaller than Ca/ proton : electron ratio in Ca ⁺ > Ca (1) greater attraction from nucleus (1)	2	
		(ii)	"oxide" ion, O^- and electron are both negative (1) hence energy is required to overcome repulsion (1)	2	
	(b)	EA↑ and l	pletes Born-Haber cycle showing 1st IE \uparrow 2nd IE \uparrow 1st EA $\downarrow 2^{nd}$ LE \downarrow (1)(1)(1) (lose 1 mark for each error/omission) = -(1)3451 kJ mol ⁻¹ (1)	5	
	(c)	using Mg ²⁻	rences in size of lattice enthalpies linked to ionic sizes/attraction g more/less exothermic rather than bigger or smaller. (1) ⁺ is smaller/Mg ²⁺ has greater charge density(1)		
		henc	e has stronger attraction for $O^{2-}(1)$	3	[12]

2. Definition – maximum 3 marks

 $Mg^{2+}(g) + 2C\Gamma(g) \rightarrow MgCl_2(s)$ (1) The enthalpy change that accompanies the formation of one mole of a solid (compound) (1); from its constituent gaseous ions (1) *Allow marks from an equation Allow energy released / energy change Not energy required Allow ionic compound / salt*

Born-Haber cycle – maximum 5 marks

Correct formulae on cycle (1) Correct state symbols (1) Use of 2 moles of Cl(g) ie 246 (1) Use of 2 moles of Cl⁻(g) 1.e. 698 (1) $-2526 \text{ kJ mol}^{-1}$ (1) Every formula must have the correct state symbol at least once Allow -2403 / -2875 (2) Allow -2752 (1) Unit required

Comparison – maximum 3 marks

Con	Comparison – maximum 5 marks									
•	Any three from Na^+ has a larger radius than Mg^{2+} / ora (1)									
	Br^- has a larger radius than Cl^- / ora (1)									
	Na ⁺ has a lower charge than Mg ²⁺ / ora (1) Strongest attraction is between Mg ²⁺ and Cl ⁻ / MgCl ₂ has									
	the strongest attraction between its ions / ora (1)									
the s	Penalise the use of incorrect particle only once within the answer.									
		Penalise it the first time an incorrect particle is mentioned								
Or										
Na^+	Na^+ has a lower charge density than Mg^{2+} / ora (1)									
Br ^{$-$} has a lower charge density than Cl ^{$-/$} ora (1)										
	Strongest attraction between ions which have the									
high	ighest charge density / MgCl ₂ has the strongest									
attra	attraction between its ions / ora (1)									
And	QWC									
One	mark t	for correct spelling, punctuation and grammar								
	in at least two sentences (1)									
				[12]						
(a)	(i)	Ionisation energy refers to removing electrons that								
		are attracted to the nucleus / energy needed to								
		overcome the force of attraction between outer	1							
		electrons and nucleus (1)	1							
	(ii)	Electron affinity involves an electron (being	1							
		gained) experiencing attraction to the nucleus (1)	1							
(b)	(i)	Correct state symbols (1);								
		Allow 1 error or omission in state symbols.								
		Providing formula has correct state symbols once in cycle this								
		is sufficient								
		Correct formula (1);								
		Correct cycle with labelling or energy values (1)	3							
	(ii)	= +178 + 249 + 798 + (-141) + 1150 + 590 + (-3459) (1)								
	()	$=-635 \text{ kJ mol}^{-1}$ (1)	2							
		Final answer must have correct units	-							
		$+635 kJ mol^{-1} scores 0$								

3.

(iii) Ionic radius of iron(II) less (than that of calcium ion) / charge density of Fe^{2+} greater (than that of Ca^{2+}) /. ora (1)

[8]

1

4

2

- 4. (a) Atomisation of Na = $(+)218 / 2 \times (+) 109$ (1); Ionisation of Na = $(+)990 / 2 \times (+)495$ (1); Any other two correct enthalpy changes (1); Last two correct enthalpy change (1)
 - (b) -791 + 141 247 990 218 416 (1); -2521 (1) Allow ecf from part (a) e.g. -2026 if only 1 mole of $Na \rightarrow Na^+$ -2412 if only 1 mole of

Na (s) \rightarrow Na (g) -1917 if only 1 mole of Na throughout Allow full marks for -2521 with no working out

(c) Calcium chloride (1) If wrong salt chosen maximum of 2 marks (the comparison of the ions)

And

Br⁻ has larger ionic radius than $C\Gamma / Br^-$ has lower charge density than $C\Gamma / \text{ora}$ (1); Not Br has larger radius

 K^+ has a lower charge than Ca^{2+} / K^+ has lower charge density than Ca^{2+} / K^+ has a larger ionic radius than $Ca^{2+} /$ ora (1); *Not* K has lower charge *Not* K^+ has larger atomic radius

Strongest attraction between ions (when smallest radius and highest charge) / strongest attraction between ions (with the highest charge density) / ora (1) 4 Penalise use of atoms rather than ions just once in this question

[10]

5. (i) Electron affinity -696 (1 mark); (a) Atomisation of Cl_2 +244 (1 mark); From top to bottom 2^{nd} IE +1150, 1st IE +590, atomisation of Ca +178 formation -796 (1 mark) 3 Allow 244, 1150, 590 and 176 i.e. without plus sign -796 - 178 - 590 - 1150 - 244 + 696 (1); (ii) But 2 -2262 (with no working) (2) Allow ecf from the wrong figures on the Born-Haber cycle 1 error max one mark 2 errors 0 mark Magnesium fluoride more exothermic than calcium chloride / ora (iii) Answer must refer to the correct particle. because Ionic radius of Mg^{2+} is less than that of Ca^{2+} / charge density of magnesium ion is greater than that of calcium ion / ora (1); Ionic radius of F- is less than that of $C\Gamma$ / charge density of fluoride ion is greater than that of chloride ion / ora (1); Not Mg or magnesium has a smaller radius or fluorine has a smaller radius

Stronger (electrostatic) attraction between cation and anionin MgF2 than in CaCl2 / stronger ionic bonds in MgF2 (1)3Allow magnesium or fluorine has a smaller ionic radius

(b) Any two from

For second ionisation energy the electron lost is closer to the nucleus / AW (1);For second ionisation energy the electron is lost from a particle thatis already positive (1);For second ionisation energy there is one more proton than electron (1)So outer electron more firmly attracted to the nucleus (1)2Allow ora

[10]